Classification of Cancer Primary Sites Using Machine Learning and Somatic Mutations
نویسندگان
چکیده
An accurate classification of human cancer, including its primary site, is important for better understanding of cancer and effective therapeutic strategies development. The available big data of somatic mutations provides us a great opportunity to investigate cancer classification using machine learning. Here, we explored the patterns of 1,760,846 somatic mutations identified from 230,255 cancer patients along with gene function information using support vector machine. Specifically, we performed a multiclass classification experiment over the 17 tumor sites using the gene symbol, somatic mutation, chromosome, and gene functional pathway as predictors for 6,751 subjects. The performance of the baseline using only gene features is 0.57 in accuracy. It was improved to 0.62 when adding the information of mutation and chromosome. Among the predictable primary tumor sites, the prediction of five primary sites (large intestine, liver, skin, pancreas, and lung) could achieve the performance with more than 0.70 in F-measure. The model of the large intestine ranked the first with 0.87 in F-measure. The results demonstrate that the somatic mutation information is useful for prediction of primary tumor sites with machine learning modeling. To our knowledge, this study is the first investigation of the primary sites classification using machine learning and somatic mutation data.
منابع مشابه
MSIseq: Software for Assessing Microsatellite Instability from Catalogs of Somatic Mutations
Microsatellite instability (MSI) is a form of hypermutation that occurs in some tumors due to defects in cellular DNA mismatch repair. MSI is characterized by frequent somatic mutations (i.e., cancer-specific mutations) that change the length of simple repeats (e.g., AAAAA…., GATAGATAGATA...). Clinical MSI tests evaluate the lengths of a handful of simple repeat sites, while next-generation seq...
متن کاملFault Detection of Anti-friction Bearing using Ensemble Machine Learning Methods
Anti-Friction Bearing (AFB) is a very important machine component and its unscheduled failure leads to cause of malfunction in wide range of rotating machinery which results in unexpected downtime and economic loss. In this paper, ensemble machine learning techniques are demonstrated for the detection of different AFB faults. Initially, statistical features were extracted from temporal vibratio...
متن کاملAccurate Discrimination of 23 Major Cancer Types via Whole Genome Somatic Mutation Patterns
The two strongest factors predicting a human cancer’s clinical behaviour are the primary tumour’s anatomic organ of origin and its histopathology. However, roughly 3% of the time a cancer presents with metastatic disease and no primary can be determined even after a thorough radiological survey. A related dilemma arises when a radiologically defined mass is sampled by cytology yielding cancerou...
متن کاملSFLA Based Gene Selection Approach for Improving Cancer Classification Accuracy
In this paper, we propose a new gene selection algorithm based on Shuffled Frog Leaping Algorithm that is called SFLA-FS. The proposed algorithm is used for improving cancer classification accuracy. Most of the biological datasets such as cancer datasets have a large number of genes and few samples. However, most of these genes are not usable in some tasks for example in cancer classification....
متن کاملAutomatic road crack detection and classification using image processing techniques, machine learning and integrated models in urban areas: A novel image binarization technique
The quality of the road pavement has always been one of the major concerns for governments around the world. Cracks in the asphalt are one of the most common road tensions that generally threaten the safety of roads and highways. In recent years, automated inspection methods such as image and video processing have been considered due to the high cost and error of manual metho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2015 شماره
صفحات -
تاریخ انتشار 2015